Mechanical control of epithelial lumen formation
نویسندگان
چکیده
Epithelial cells differentiate and polarize to build complete epithelial organs during development. The study of epithelial morphogenesis is instrumental to the understanding of disease processes where epithelial polarity is disrupted. Recently, we demonstrated that matrix-induced cell confinement controls the acquisition of three-dimensional epithelial polarity, by modulating the initiation of the apical membrane to form a central lumen (J Cell Biol 2012; 198:1011-1026). Cell confinement can be achieved by use of micropatterned culture chips that allow precise micrometric-scale control of the cell adhesion surface and its composition. Using micropattern chips, we demonstrated that polarizing epithelial cells require high confinement conditions to properly position the centrosome and the trafficking machinery toward the cell-cell contacts and to initiate lumen morphogenesis. Low confinement induces LKB1 and RhoA-mediated cell contractility, which inhibits this mechanism for lumen formation. Deactivation of Myosin-II-mediated contractility rescued normal lumen initiation in low confinement conditions. Our results indicate that a mechanotransduction pathway coordinates nuclear and centrosome positioning to initiate epithelial morphogenesis. Here we discuss the potential candidates that control this process, specifically the polarized activation of Rho and Rab-family GTPases, and also a group of recently characterized nuclear transcription factors.
منابع مشابه
Morphogenetic Mechanisms of Endothelial Cells During Lumen Formation in Sprouting Angiogenesis
Different mechanisms such as cell migration, proliferation, branching, anastomosis, and lumen formation occur during the angiogenesis process. Lumen formation is one of the critical mechanisms which is not only necessary for the functional plexus but also for continuing of angiogenesis process. Although multiple studies investigated this mechanism during the angiogenesis process in both in vivo...
متن کاملSynthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis
Epithelial cells cultured within collagen and laminin gels proliferate to form hollow and polarized spherical structures, recapitulating the formation of a rudimentary epithelial organ. However, the contributions of extracellular matrix (ECM) biochemical and biophysical properties to morphogenesis are poorly understood because of uncontrolled presentation of multiple adhesive ligands, limited c...
متن کاملThree-dimensional modeling of mechanical forces in the extracellular matrix during epithelial lumen formation.
Mechanical interactions between cells and extracellular matrix (ECM) mediate epithelial cyst formation. This work relies on the combination of numerical modeling with live cell imaging, to piece together a novel nonintrusive method for determining three-dimensional (3D) mechanical forces caused by shape changes of a multicellular aggregate at the early stages of epithelial cyst formation. We an...
متن کاملMulticellular Architecture of Malignant Breast Epithelia Influences Mechanics
Cell-matrix and cell-cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular tissue architecture on mechanical...
متن کاملThe Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis
Epithelial organs are made of tubes and cavities lined by a monolayer of polarized cells that enclose the central lumen. Lumen formation is a crucial step in the formation of epithelial organs. The Rho guanosine triphosphatase (GTPase) Cdc42, which is a master regulator of cell polarity, regulates the formation of the central lumen in epithelial morphogenesis. However, how Cdc42 is regulated du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013